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Discriminating Escherichia albertii from other 
Enterobacteriaceae is diffi cult. Systematic analyses 
showed that E. albertii represents a substantial portion 
of strains currently identifi ed as eae-positive Escherichia 
coli and includes Shiga toxin 2f–producing strains. 
Because E. albertii possesses the eae gene, many strains 
might have been misidentifi ed as enterohemorrhagic or 
enteropathogenic E. coli.

Attaching and effacing pathogens possess a locus 
of enterocyte effacement (LEE)–encoded type III 

secretion system. They form attaching and effacing lesions 
on intestinal epithelial cell surfaces by the combined 
actions of intimin, an eae gene–encoded outer membrane 
protein, and type III secretion system effectors. Attaching 
and effacing pathogens include enterohemorrhagic and 
enteropathogenic Escherichia coli (EHEC and EPEC, 
respectively) and Citrobacter rodentium (1,2). Escherichia 
albertii have recently been added to this group (3–5). 
However, the clinical signifi cance of E. albertii has yet 
to be fully elucidated, partly because it is diffi cult to 
discriminate E. albertii from other Enterobacteriaceae spp. 
by using routine bacterial identifi cation systems based on 

biochemical properties (6–9). A large number of E. albertii 
strains might have been misidentifi ed as EPEC or EHEC 
because they possess the eae gene.

The Study
We collected 278 eae-positive strains that were 

originally identifi ed by routine diagnostic protocols 
as EPEC or EHEC. They were isolated from humans, 
animals, and the environment in Japan, Belgium, Brazil, 
and Germany during 1993–2009 (Table 1; online Technical 
Appendix, wwwnc.cdc.gov/pdfs/11-1401-Techapp.pdf). 
To characterize the strains, we fi rst determined their 
intimin subtypes by sequencing the eae gene as described 
(online Technical Appendix). Of the 275 strains examined, 
267 possessed 1 of the 26 known intimin subtypes (4 
subtypes—η, ν, τ, and a subtype unique to C. rodentium—
were not found). In the remaining 8 strains, we identifi ed 
5 new subtypes; each showed <95% nt sequence identity 
to any known subtype, and they were tentatively named 
subtypes N1–N5. For subtype N1, 3 variants were identifi ed 
(N1.1, N1.2, and N1.3, with >95% sequence identity among 
the 3 variants) (Figure 1, panel A).

To determine the phylogenetic relationships of the 
strains, we performed multilocus sequencing analysis of 
179 strains that were selected from our collection on the 
basis of intimin subtype and serotype (see online Technical 
Appendix for selection criteria and analysis protocol). 
Among the 179 strains, 26 belonged to the E. albertii 
lineage (Figure 2). The 26 E. albertii strains were from 14 
humans (13 from symptomatic patients), 11 birds, and 1 
cat. All of the 5 new intimin subtypes were found in the E. 
albertii strains. Intimin subtypes found in other E. albertii 
strains were also rare subtypes found in E. coli (10). This 
fi nding suggests that more previously unknown intimin 
subtypes may exist in the E. albertii population.

We next analyzed the pheV, selC, and pheU loci of the 
26 E. albertii strains for the presence of LEE elements as 
described (online Technical Appendix). These 3 genomic 
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Table 1. Summary of 275 eae-positive strains originally identified 
by routine diagnostic protocols as EPEC or EHEC* 
Origin No. strains 
Human, n = 193  
 Symptomatic 154 
 Asymptomatic 7 
 No information 32 
Animal, n = 76  
 Bird 38 
 Pig 31 
 Cat 1 
 Deer 1 
 Bovid 1 
 Sheep 1 
 No information 3 
Environment, n = 6 6 
*EPEC, enteropathogenic Escherichia coli; EHEC, enterohemorrhagic E.
coli.
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loci are the known LEE integration sites in E. coli. By 
this analysis, all E. albertii strains except 1 (EC05–44) 
contained the LEE in the pheU locus (the integration site 
in EC05–44 was not identifi ed). This fi nding indicates that 
despite the remarkable diversity of intimin subtypes, the 
LEE elements are preferentially integrated into the pheU 
tRNA gene in E. albertii.

Because all E. albertii strains isolated so far contained 
the cdtB gene encoding the cytolethal distending toxin B 
subunit (8,9), we examined the presence and subtype of 
the cdtB gene as described (online Technical Appendix). 

This analysis revealed that all E. albertii strains except 1 
(CB10113) possessed the cdtB gene belonging to the II/
III/V subtype group (Figure 1, panel B); this fi nding is 
consistent with published fi ndings (9). In addition, 2 strains 
(E2675 and HIPH08472) each of which was subtype I , 
possessed a second cdtB gene, (Figure 1, panel B).

We used PCR to further investigate the presence of 
Shiga toxin genes (stx) and their variants (online Technical 
Appendix) and found that 2 E. albertii strains possessed the 
stx2f gene (Figure 2, panel B). Stx2 production by these strains 
was confi rmed by using a reverse-passive latex agglutination 

Figure 1. Phylogenies of the intimin subtypes and the cdtB genes of 
275 eae-positive strains from humans, animals, and the environment 
that had been originally identifi ed by routine diagnostic protocols as 
enteropathogenic or enterohemorrhagic Escherichia coli. A) Neighbor-
joining tree constructed based on the amino acid sequences of 30 
known intimin subtypes and previously undescribed 5 intimin subtypes 
(N1–N5) that were identifi ed. The sequences of the N1–N5 alleles are 
substantially divergent from any of the known intimin subtypes (<95% 
sequence identity). Three variants of N1 (N1.1–N1.3) exhibit >95% 
homology to each other. B) Neighbor-joining tree constructed by using 
the partial amino acid sequences of the cytolethal distending toxin 
B subunit encoded by the cdtB gene. Boldface indicates reference 
sequences (and strain names) for 5 subtypes; underlining indicates 
alleles identifi ed and names of the strains from which each allele was 
identifi ed. The alleles that were amplifi ed by the s2/as2 primer pair 
were classifi ed into the I/IV subtype group, and those amplifi ed by 
the s1/as1 primer pair were classifi ed into the II/III/V subtype group 
(see online Technical Appendix, wwwnc.cdc.gov/EID/pdfs/11-1401-
Techapp.pdf, for primer information). Among the 3 alleles classifi ed 
into the latter group, 1 was identifi ed as a second copy in 2 Escherichia 
albertii strains (E2675–2 and HIPH08472–2), but the others were from 
either 1 E. coli strain (9037) or 8 E. coli strains (e.g., Bird 10). All alleles 
classifi ed into the II/III/V subtype group were from E. albertii strains. 
Scale bars indicate amino acid substitutions (%) per site.
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kit (online Technical Appendix). The 2 stx2f-positive strains 
were those containing the subtype I cdtB gene in addition to 
the II/III/V subtype group gene: 1 (HIPH08472) was isolated 
from a patient with diarrhea and the other (E2675) was from 
a healthy Corvus sp. bird (Figure 2).

Last, we examined the phenotypic and biochemical 
properties of the 26 E. albertii strains and compared the 
results with those obtained in a previous study (9) and with 
those of E. albertii type strain LMG20976 (Table 2). To 
identify features that could discriminate E. albertii from E. 
coli, the results were further compared with those of E. coli 
(11). Consistent with fi ndings in previous reports (5–7,9), 
the lack of motility and the inability to ferment xylose and 
lactose and to produce β-D-glucuronidase were common 
biochemical properties of E. albertii that could be used to 

discriminate E. albertii from E. coli, although 1 E. albertii 
strain was positive for lactose fermentation. The inability 
of E. albertii to ferment sucrose has been described as a 
common feature (9); however, a positive reaction to this 
test was found for 5 (19.2%) E. albertii strains. Moreover, 
approximately half of E. coli strains are positive for sucrose 
fermentation. Thus, the inability to ferment sucrose is not 
informative. Rather, the inability to ferment dulcitol (all 
E. albertii strains were negative, 60% of E. coli strains 
are positive) may be a useful biochemical property for 
differentiation.

Conclusions
In the current clinical laboratory setting, a substantial 

number of E. albertii strains are misidentifi ed as EPEC or 

Figure 2. Neighbor-joining tree of 179 eae-positive Escherichia coli and Escherichia albertii strains analyzed by multilocus sequence 
analysis. The tree was constructed with the concatenated partial nucleotide sequences of 7 housekeeping genes (see online Technical 
Appendix, wwwnc.cdc.gov/EID/pdfs/11-1401-Techapp.pdf, for protocol details). A) The whole image of the 179 strains examined and 10 
reference strains (E. coli/Shigella sp., E. fergusonii, and Salmonella enterica serovar Typhi) is shown. B) Enlarged view of the E. albertii 
lineage and the genetic information of the identifi ed E. albertii strains. E. coli strain MG1655 and E. albertii type strain LMG20976 are 
included as references. There was no phylogenetic correlation between human and animal isolates. The cdtB genes indicated by * are 
classifi ed as subtype I. The strains indicated by † were isolated from patients with signs and symptoms of gastrointestinal infection. LEE, 
locus of enterocyte effacement; NI, not identifi ed; NA, not applicable. Scale bars indicate amino acid substitutions (%) per site.
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EHEC. Because 13 of the isolates were from patients with 
signs and symptoms of gastrointestinal infection, E. albertii 
is probably a major enteric human pathogen. In addition, E. 
albertii should be regarded as a potential Stx2f-producing 
bacterial species, although the clinical signifi cance of 
Stx2f-producing strains is unknown.

Notable genetic, phenotypic, and biochemical 
properties of E. albertii, which were identifi ed by 
analyzing the confi rmed E. albertii strains, are 1) 
possession of intimin subtypes rarely or previously 
undescribed in E. coli, 2) possession of the II/III/V subtype 
group cdtB gene, 3) LEE integration into the pheU tRNA 
gene, 4) nonmotility, and 5) inability to ferment xylose, 
lactose, and dulcitol (but not sucrose) and to produce 
β-D-glucuronidase. These properties could be useful for 
facilitating identifi cation of E. albertii strains in clinical 
laboratories, which would in turn improve understanding 
of the clinical signifi cance and the natural host and 
niche of this newly recognized pathogen. In this regard, 
however, current knowledge of the genetic and biological 
properties of E. albertii might be biased toward a certain 
group of E. albertii strains because, even with this study, 
only a limited number of strains have been analyzed. To 
more precisely understand the properties of E. albertii as 

a species, further analysis of more strains from various 
sources is necessary.
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The International Conference on Emerging Infectious Dis-
eases was fi rst convened in 1998; ICEID 2012 marks its 
eighth occurence. The conference brings together public 
health professionals to encourage the exchange of scien-
tifi c and public health information on global emerging in-
fectious disease issues. The program will include plenary 
and panel sessions with invited speakers as well as oral 
and poster presentations on emerging infections. Major 
topics to be included are current work on surveillance, epi-
demiology, research, communication and training, bioter-
rorism, and prevention and control of emerging infectious 
diseases, both in the United States and abroad. 


